【廣告】
1.問題提出
試制時規(guī)劃制作了圖2所示的小端鉆模,在搖臂鉆床Z35上加工噴油器體的3mm×φ2.5mm斜油孔。先用小端鉆模引鉆出3mm×φ2.5mm孔點位,再將全能分度頭傾斜一定視點,裝夾噴油器體大端法蘭,別離將待鉆孔位旋轉到低點,順次鉆出3mm×φ2.5mm斜油孔與已鉆3mm×φ3mm長油孔貫穿。
圖2 小端鉆模
試制時按此辦法加工的3mm×φ2.5mm斜油孔與φ3mm孔接通狀況不好。工藝上要求用φ1.5mm鋼絲檢測貫穿油孔,φ1.5mm鋼絲應能穿過銜接油孔。咱們對試制的這批噴油器體斜油孔貫穿狀況進行全數(shù)檢查,φ1.5mm鋼絲不能穿過的孔位超越50%。
咱們剖析了斜油孔接通狀況不好的主要原因:用全能分度頭裝夾,旋轉方向定位靠劃線對正,定位誤差較大;用中心鉆對正預制孔有誤差,中心孔偏移影響對中精度;搖臂鉆床Z35主軸鎖定精度差,鉆小孔時簡略走偏,不適宜加工細長孔。因此規(guī)劃制作了噴油器體鉆斜孔輔具,將鉆3mm×φ2.5mm斜油孔工序安排到臺鉆Z512上進行。
2.利用鉆斜孔輔具在臺鉆上加工斜油孔
臺鉆主軸固定,可挑選較高轉速范圍大,手輪進給使鉆削更平穩(wěn),排屑冷卻更方便快捷,有利于細長孔的加工。由于噴油器體的3mm×φ2.5mm孔是斜油孔,并且有較高的對接精度要求,因此規(guī)劃制作了噴油器體鉆斜油孔輔具。鉆孔輔具的結構如圖3所示。
圖3 噴油器體鉆斜油孔輔具
1.定位斜塊 2.菱形銷 3.聯(lián)接螺栓 4.放錯銷 5.銜接盤
如圖3中,噴油器體經(jīng)過大端面、中間螺紋孔M16×1和法蘭孔φ18mm與銜接盤完結徹底定位,防錯銷確保噴油器體法蘭定位孔挑選正確,不然無法安裝到位。銜接盤上銑了3個定位旁邊面,別離與3mm×φ2.5mm斜油孔方位對應。這樣噴油器體與銜接盤裝配后,就可經(jīng)過銜接盤上的定位旁邊面與定位斜塊上的定位旁邊面靠齊,完結裝夾定位,鉆一個φ2.5mm斜油孔與φ3mm長油孔接通后,轉動銜接盤,使其他定位旁邊面別離與定位斜塊的定位旁邊面靠齊,鉆出其他2個φ2.5mm斜油孔。
定位斜塊和銜接盤的結構如圖4所示,經(jīng)過銜接盤上的中間定位孔、菱形銷孔和端面定位銜接,完結了噴油器體與銜接盤的徹底對定,再經(jīng)過銜接盤上距離中心68mm的三個旁邊面與定位斜塊靠齊,別離對應到3mm×φ2.5mm斜油孔的筆直狀態(tài)。這樣完結了定位快速、經(jīng)確牢靠。
圖4 銜接盤和定位斜塊
噴油器體鉆斜油孔輔具一次裝夾,二次轉位,完結了在臺鉆上加工3mm×φ2.5mm斜油孔與φ3mm長油孔對接。對接方位精度偏差小于0.5mm,才干確保φ1.5mm鋼絲能經(jīng)過相貫處。加工好的噴油器體油孔用φ1.5mm鋼絲檢查,均能正常穿過,產(chǎn)品質量得到了確保。此工裝裝夾簡略,操作方便,定位經(jīng)確牢靠,確保了產(chǎn)品質量。
3.結語
噴油器體鉆斜油孔輔具完結了在臺鉆上加工3mm×φ2.5mm斜油孔,不僅出產(chǎn)效率得到進步,并且產(chǎn)品質量得到確保,大大降低了廢品率。此次工藝改善獲得成功,油孔對接方位精度合格率到達95%以上,解決了困擾噴油器體加工的質量問題。我公司已完結船用噴油器批量出產(chǎn),產(chǎn)品質量得到用戶信任。此工藝辦法也為相似件的加工提供了一個新的思路。
德國轎車齒輪加工技能,震撼解讀!
現(xiàn)在,我國已成為世界地一轎車制作與銷售大國,轎車制作業(yè)已成為我國經(jīng)濟不可或缺的支柱產(chǎn)業(yè)。轎車齒輪制作與運用量(主機及配件運用)無疑成為世界地一。
轎車齒輪作為轎車上要害零件,首要用于傳遞動力和運動,并通過它們來改動發(fā)動機曲軸和主軸齒輪的速比。因為轎車行進狀況隨路況隨機改變,因而轎車齒輪的工作狀況非常復雜,這就要求轎車齒輪具有杰出的內質量。
轎車齒輪熱處理工藝、特點與效果
轎車齒輪的內涵質量首要是指齒輪的顯微安排、力學功能等目標滿意技能要求,一起其他缺陷必須操控在規(guī)則的技能范圍之內。
轎車齒輪內涵質量的好壞是決定齒輪質量的要害,其徹底取決于熱處理質量,是齒輪完成低噪聲、,長壽命的要害因素。
轎車齒輪熱處理(工藝)包括:一是普通熱處理,如退火、正火、淬火、回火、調質;二是外表熱處理,其包括外表淬火(如感應淬火、激光淬火等)和化學熱處理(如滲碳、碳氮共滲、滲氮、氮碳共滲等)。
1調質
調質是將齒輪等零件淬火后進行高溫(500~650℃)回火的操作。調質處理常用于含碳量0.3%~0.5%(質量分數(shù))的碳素鋼或合金鋼制作的齒輪。
調質能夠細化晶粒,并獲得均勻、具有必定彌散度、尤秀力學功能的回火索氏體安排。一般經(jīng)調質處理后,齒輪硬度可達220~285HBW。調質齒輪的歸納功能優(yōu)于正火。
調質常用于齒輪的準備熱處理(如滲氮、感應淬火前的調質處理)和終究熱處理。
2外表淬火
齒輪齒面淬火硬度一般為45~55HRC。外表淬火齒輪承載才能高,并能夠承受沖擊載荷。通常外表淬火齒輪的毛坯經(jīng)正火或調質處理,以便使齒輪心部有必定的強度和韌度。
外表淬火首要有感應淬火、激光淬火與火焰淬火等。與滲碳淬火比較,外表淬火變形小、成本低、。
轎車齒輪外表淬火首要選用感應淬火工藝。因為感應加熱速度快,幾乎沒有氧化、脫碳,齒輪變形很小,還易于完成局部加熱及主動化生產(chǎn),熱處理成本低。因而,在現(xiàn)代化轎車行業(yè)中得到廣泛應用。
3滲碳與碳氮共滲
滲碳淬火
滲碳淬火是先將齒輪等零件放入滲碳介質中,在880~950℃下加熱、保溫,使齒輪外表增碳,然后進行淬火。
轎車齒輪常用氣體滲碳工藝。滲碳淬火、回火后齒輪外表硬度一般在58~63HRC。現(xiàn)在,滲碳淬火已經(jīng)成為重要轎車齒輪(如差速器齒輪、驅動橋主從動弧齒錐齒輪、變速器齒輪等)的主導熱處理工藝。
碳氮共滲
近幾年轎車用主動變速器AIT滲碳齒輪的齒面在工作中的實踐溫度約達300℃,遠高于正常的回火溫度(150~200℃)。這種外表的溫度將導致硬度下降,引發(fā)點蝕的產(chǎn)生。選用碳氮共滲后噴丸硬化可進步疲憊強度。在碳氮共滲時,隨著含氮量的添加ΔHV(硬度降)進步,抗回火功能進步,抗回火溫度到達300℃。
4滲氮與氮碳共滲
滲氮
滲氮是向齒輪等零件外表進入氮原子形成氮化層的化學熱處理工藝。滲氮能夠進步齒輪外表硬度、耐磨性、疲憊強度及抗蝕才能。滲氮處理溫度低,因而齒輪變形小,無需磨削或只需精磨即可。
日本在轎車變速器齒輪熱處理時選用滲氮工藝,德國Clocker-離子公司將離子滲氮應用于轎車齒輪,均進步了齒輪精度和運用壽命。
氮碳共滲
氮碳共滲是以滲氮為主一起進入碳的化學熱處理工藝。氮碳共滲能夠顯著進步齒輪的耐磨性、抗膠合和抗擦傷才能、耐疲憊功能及耐腐蝕功能?,F(xiàn)在,氣體氮碳共滲應用于轎車、輕型客車變速器齒輪等零件。
轎車齒輪熱處理的開展趨勢
未來轎車齒輪正向重載、高速、和率等方向開展,并力求尺寸小、重量輕、壽命長和經(jīng)濟可靠。
(1)高品質
首要表現(xiàn)在:資料的均勻性,即要求資料具有杰出的成分和安排的均勻性;溫度場和流體場,即不斷改進溫度場和各種流體場,如滲碳、滲氮、碳氮共滲的流體場和淬火的液體場的改進,進一步進步齒輪內涵質量。
(2)低能耗
齒輪熱處理先進配備的研制和開展,如開發(fā)更好的爐襯耐熱和保溫節(jié)能資料,盡可能下降爐壁溫升,削減爐壁熱損耗;廢熱歸納使用,如鑄造余熱的使用,進行鑄造余熱正火等,下降齒輪成本。
(3)環(huán)保
研究開發(fā)齒輪的新工藝,這些新工藝少(無)污染、環(huán)保,如低壓真空滲碳、離子滲氮、雙頻感應淬火、激光淬火、稀土及BH催滲等技能的開展。
(4)智能化
智能化是齒輪熱處理操控技能開展的必然趨勢,計算機、傳感器、智能庫將構成智能熱處理的中心,首要表現(xiàn)在:依據(jù)齒輪等零件的資料、技能要求等,體系主動生成工藝;生產(chǎn)過程的徹底閉環(huán)主動操控;齒輪等零件的熱處理質量的預測、預判;體系故障主動診斷與處置;在線的自適應及應急應變才能,如開發(fā)了離子滲氮、碳氮共滲所用的氮勢傳感器和低壓滲碳的碳勢傳感器等。
刀具經(jīng)過砂輪刃磨后,刃口會存在不同程度的微觀缺陷,在切削過程中,刀具刃口微觀缺口極易擴展,加快刀具的磨損和損壞。刃口鈍化是延常刀具壽命的金屬切削配套技術,能有效減少或消除刃磨后的刀具刃口微觀缺陷,以達到圓滑平整,提高刀具抗沖擊性能,使刀具刃口鋒利堅固。
刃口鈍化方式可分為傳統(tǒng)刃口鈍化和特種刃口鈍化。傳統(tǒng)刃口鈍化方式主要包括磨削鈍化、毛刷鈍化、拖曳鈍化和噴砂鈍化等;特種刃口鈍化方式主要包括激光鈍化、電火花電蝕鈍化、電化學鈍化和磨料水射流鈍化等。
噴砂是以壓縮空氣為動力,以形成高速噴射束將噴料高速噴射到需要處理的工件表面,實現(xiàn)對工件表面的加工。由于磨料對工件表面的沖擊和切削作用,工件的表面性能和形狀會發(fā)生改變。而微噴砂技術是以傳統(tǒng)噴砂技術為基礎,采用微米級尺寸的磨料顆粒來進行待加工表面處理的技術,廣泛應用于材料的表面處理,包括表面清潔、表面鈍化和表面形貌處理。微噴砂處理的材料去除機理,包括裂紋擴展導致的脆性去除和磨料微切削產(chǎn)生的塑性去除。微噴砂技術在刀具領域主要應用在表面處理方面,如涂層刀具。通過對刀具基體表面進行相應的微噴砂處理,來改變基體的表面形貌,以增加涂層與刀具基體之間的粘結力,提高刀具的切削壽命。研究表明,對刀具的涂層表面進行微噴砂處理可以增加涂層硬度,提高刀具切削壽命。微噴砂技術在刀具刃口鈍化領域沒有得到廣泛應用,理論研究還不充分。
本文通過微噴砂技術對硬質合金刀片YT15進行刃口鈍化,研究微噴砂工藝參數(shù)對刃口半徑的影響以及微噴砂處理對刃口質量的影響,并分析微噴砂處理的材料去除機理。
1試驗步驟
試驗以噴砂壓力P、磨料比重W和噴砂時間T為因素,其中磨料比重W為磨料占水和磨料總質量的比重。每個因素設4個水平,進行64組全因素刃口鈍化試驗,因素水平見表1。
表1 微噴砂全因素試驗因素水平
采用濕式手動噴砂機,噴砂角度45°,噴砂距離8mm。磨料為320目白剛玉,微噴砂加工如圖1所示。選用可轉位硬質合金刀片YT15,其尺寸標準為SNMN120404,相應的材料性能見表2。通過激光共聚焦顯微鏡(LSM,Keyence VK-X200K)對微噴砂處理后的刀片刃口進行觀測,試驗觀測指標為刀片刃口半徑r和刃口線粗糙度Ra,終結果為三次測量后的平均值。同時對其刃口形貌進行掃描電子顯微鏡鏡(SEM)觀察,分析刃口材料去除機理。
圖1 硬質合金刀具YT15微噴砂加工示意圖
表2 硬質合金刀具YT15物理力學性能
2試驗結果與分析
(1)微噴砂工藝參數(shù)對刃口半徑的影響
圖2為硬質合金刀具YT15刃口半徑隨微噴砂各工藝參數(shù)的變化趨勢。圖2a、圖2b、圖2c和圖2d分別是在噴砂時間為20s、30s、40s和50s時刃口半徑隨噴砂壓力的變化圖。對比發(fā)現(xiàn),在相同的噴砂壓力和磨料比重下,隨噴砂時間的增加,刀具刃口半徑增大,這實質上是材料去除隨著時間累積的結果。在相同的噴砂時間和磨料比重下,隨噴砂壓力的增加,刀具刃口半徑增大。這是因為隨著噴砂壓強的增加,磨料流的出口速度增加,單顆粒磨料速度也相應增加。
硬質合金可看作是硬脆材料,根據(jù)單顆粒磨料沖蝕模型可知,單顆粒磨料的材料去除量與磨料顆粒的速度的指數(shù)成正比,使得單顆粒磨料的材料去除量增加。同時磨料流速度的增加,使單位時間內有效沖擊刀具刃口的磨料顆粒數(shù)量增加,刃口材料的去除量變大。因此,增加噴砂壓力相當于既增加磨料比重又增加噴砂時間,兩者的共同作用使刃口半徑增大。
由圖2分析磨料比重對刀具刃口半徑的影響可知,在噴砂壓力為0.2MPa和0.25MPa時,隨著磨料比重的增加,刀具的刃口半徑先增大而后減小;而在噴砂壓力為0.3MPa和0.35MPa時,隨著磨料比重的增加,刀具的刃口半徑呈現(xiàn)一直增大的趨勢。同理,根據(jù)單顆粒磨料沖蝕模型分析可知,當噴砂壓力較小時,隨著磨料比重的增加,雖然單顆粒磨料速度減小,但是單位體積內磨料顆粒的數(shù)量增加,造成單位時間內磨料顆粒對刀具刃口的沖擊次數(shù)增加,所以刃口材料的去除量變大。當磨料比重過大時,根據(jù)能量守恒可知,磨料流的速度減小很多,其中磨料顆粒的速度大幅降低,不僅減少了單顆粒磨料材料的去除量,也使單位時間內磨料對刀具刃口的沖擊次數(shù)減少,進一步減少材料去除量,使得刃口半徑隨著磨料比重的增加先增大后減小。當噴砂壓力較大時,隨著磨料比重的增加,在單位時間內增加的磨料對刀具刃口的沖擊次數(shù)所增加的材料去除量要多于單顆粒磨料速度降低而減少的材料去除量??偟膩碚f,單位時間內材料去除量增加,因此在較大噴砂壓力下,刀具的刃口半徑隨著磨料比重的增加而增加。
(a)T=20s(b)T=30s(c)T=40s(d)T=50s
圖2 刃口半徑隨微噴砂各工藝參數(shù)的變化趨勢
(2)微噴砂處理對刃口線粗糙度的影響
圖3是硬質合金刀片YT15經(jīng)過微噴砂刃口鈍化處理前后的切削刃形貌。采用微噴砂工藝參數(shù):噴砂壓力P=0.2MPa,磨料比重W=0.1,噴砂時間T=30s。通過測量得到切削刃的相關參數(shù)見表3。
圖3 未處理刀片與微噴砂刃口鈍化刀片的切削刃形貌
可以發(fā)現(xiàn),硬質合金刀片YT15的刃口輪廓由原來的r=6μm銳刃變成r=27μm的圓弧刃口。其切削刃形貌得到改善,刃口線粗糙度Ra由原來的0.79μm下降到0.5μm,Ry則由原來的6μm下降到3μm。這是由于微噴砂處理消除了刀具刃磨時產(chǎn)生的微觀缺陷,改善了刃口質量。
表3 未處理刀片與微噴砂刃口鈍化刀片刃口參數(shù)對比(μm)
圖4是微噴砂全因素試驗時硬質合金刀片YT15的刃口線粗糙度的分布情況??梢缘贸?,硬質合金YT15刀片的刃口線粗糙度為0.3-0.8μm,滿足刀片的刃口粗糙度要求。
圖4 硬質合金刀具YT15刃口線粗糙度分布
(3)微噴砂刃口材料去除機理研究
刀片的微噴砂過程實質上是高速磨料射流沖擊材料表面,實現(xiàn)材料的去除。其材料去除機理主要歸結為磨料顆粒對材料的去除方式。對于脆性材料,其去除機理往往不只有脆性去除,還包括磨料顆粒的微剪切引起的塑性去除。
圖5是硬質合金刀具YT15在噴砂壓力P=0.25MPa、磨料目數(shù)M=320、噴砂時間T=20s和磨料比重W=0.1時的刃口形貌??梢钥闯?,經(jīng)過微噴砂處理后,刀具出現(xiàn)了圓弧刃口,對其圓弧刃口的區(qū)域A進行放大,可以觀察刃口材料去除形成的微觀形貌。通過區(qū)域B可以看出,其硬質合金中硬質相的去除多為由裂紋擴展造成的脆性斷裂,這是由于棱角尖銳的磨料顆粒對于硬質相的沖擊作用,使之產(chǎn)生徑向裂紋和側向裂紋,由于磨料顆粒的高頻率沖擊,進而造成側向裂紋的擴張形成網(wǎng)狀裂紋,達到材料的去除。對于C區(qū)域的觀察,也可以發(fā)現(xiàn)刃口材料上存在磨料顆粒的刻劃痕跡,這主要是由于具有鋒利刃口的白剛玉磨料顆粒對工件材料的微切削作用導致。由于刀具材料中除硬質相成分外,還包括粘結相,其微切削作用相對于粘結相更為明顯,粘結相材料先于硬質相去除,使得硬質相成分顯露出來。因此微噴砂處理硬質合金刀具YT15的材料去除機理,包括由磨料沖擊和水楔作用引起裂紋擴展而導致硬質相材料的脆性去除,還包括磨料顆粒的微切削作用引起的材料塑性去除。
圖5 硬質合金刀具YT15微噴砂刃口形貌SEM圖
小結
微噴砂處理可以對硬質合金刀具YT15刃口進行有效鈍化,形成一定圓弧半徑的刀具刃口。研究表明,刃口圓弧半徑隨著微噴砂時間和噴砂壓力的增加而增大。對于磨料比重而言,在噴砂壓力為0.2MPa和0.25MPa時,隨著磨料比重的增加,刀具刃口半徑先增大而后減小;在噴砂壓力為0.3MPa和0.35MPa時,隨著磨料比重的增加,刀具刃口半徑呈現(xiàn)一直增大的趨勢。微噴砂處理可有效改善硬質合金刀具YT15的刃口質量,消除微觀缺陷,降低刃口線粗糙度,在結構上對刀具刃口進行鈍化。硬質合金刀具YT15刃口材料的去除機理,包含由裂紋擴展而導致硬質相材料的脆性去除和微切削作用引起的材料塑性去除。
由于CNC加工中心其是采用軟件進行鎖住的,在模仿加工時,當按下主動運轉按鈕時在模仿界面并不能直觀地看到機床是否已鎖住。模仿時往往又沒有對刀,假如機床沒有鎖住運轉,極易發(fā)生撞刀。所以在模仿加工前應到運轉界面確認一下機床是否鎖住。加工時忘掉關閉空運轉開關。由于在程序模仿時,為了節(jié)省時刻常常將空運轉開關打開??者\轉指的是機床一切運動軸均以G00的速度運轉。假如在加工時空運轉開關沒關的話,機床疏忽給定的進給速度,而以G00的速度運轉,形成打刀、撞機床事端。空運轉模仿后沒有再回參考點。在校驗程序時機床是鎖住不動的,而刀具相對工件加工在模仿運轉(決對坐標和相對坐標在變化),這時的坐標與實踐方位不符,須用返回參考點的辦法,確保機械零點坐標與決對、相對坐標一致。假如在校驗程序后沒有發(fā)現(xiàn)問題就進行加工操作,將形成刀具的磕碰。超程免除的方向不對。
當機床超程時,應該按住超程免除按鈕,用手動或手搖辦法朝相反方向移動,即能夠消除??墒羌偃缑獬姆较蚺戳?,則會對機床產(chǎn)生傷害。由于當按下超程免除時,機床的超程維護將不起作用,超程維護的行程開關已經(jīng)在行程的盡頭。此刻有或許導致工作臺繼續(xù)向超程方向移動,終拉壞絲杠,形成機床損壞。制定行運轉時光標方位不妥。制定行運轉時,往往是從光標所在方位開始向下執(zhí)行。對車床而言,需要調用所用刀具的刀偏值,假如沒有調用刀具,運轉程序段的刀具或許不是所要的刀具,極有或許因刀具不同而形成撞刀事端。當然在加工中心、數(shù)控銑床上一定要先調用坐標系如G54和該刀的長度補償值。由于每把刀的長度補償值不一樣,假如沒調用也有或許形成撞刀。
CNC加工中心數(shù)控機床作為的機床,防撞是非常必要的,要求操作者養(yǎng)成認真細心慎重的習氣,按正確的辦法操作機床,減少機床撞刀現(xiàn)象發(fā)生。跟著技術的開展呈現(xiàn)了加工過程中刀具損壞檢測、機床防撞擊檢測、機床自適應加工等先進技術,這些能夠更好地維護數(shù)控機床。
歸納起來9點原因:
(1)程序編寫過錯
工藝安排過錯,工序承接聯(lián)系考慮不周詳,參數(shù)設定過錯。
例:A.坐標設定為底為零,而實踐中卻以頂為0;
B.安全高度過低,導致刀具不能徹底抬出工件;
C.二次開粗余量比前一把刀少;
D.程序寫完之后應對程序之途徑進行剖析檢查;
(2)程序單補白過錯
例:A.單邊碰數(shù)寫成四邊分中;
B.臺鉗夾持間隔或工件凸出間隔標示過錯;
C.刀具伸出長度補白不詳或過錯時導致撞刀;
D.程序單應盡量詳細;
E.程序單設變時應采用以新?lián)Q舊之準則:將舊的程序單消毀。
(3)刀具丈量過錯
例: A.對刀數(shù)據(jù)輸入未考慮對刀桿;
B.刀具裝刀過短;
C.刀具丈量要運用科學的辦法,盡或許用較經(jīng)確的儀器;
D.裝刀長度要比實踐深度長出2-5mm。
(4)程序傳輸過錯
程序號呼叫過錯或程序有修改,但仍然用舊的程序進行加工;
現(xiàn)場加工者必須在加工前檢查程序的詳細數(shù)據(jù);
例如程序編寫的時刻和日期,并用熊族模仿。
(5)選刀過錯
(6)毛坯超出預期,毛坯過大與程序設定之毛坯不相符
(7)工件資料本身有缺點或硬度過高
(8)裝夾要素,墊塊干與而程序中未考慮
(9)機床故障,俄然斷電,雷擊導致撞刀等